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WHY Swift?
Rapid Response

XRT has about the same resolution as the
ACIS on Chandra

BUT
has a smaller effective area

Rapid Response
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Fig. 1.— Comparison of XRT effective areas of Swift with other X-ray instruments that are sensitive in the same spectral region. None of the Chandra or
XMM-Newton gratings have a higher effective area than the XRT. The CCD detectors, ACIS-S (Chandra) and EPIC (PN/MOS1; XMM-Newton), have higher
effective areas. The spectral resolution of the XRT is similar to either the ACIS or EPIC detectors, but the spectral resolution of the gratings is far superior.

Ness et al. 2007
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Fieure I ROSAT PSPC count spectra of three obiects in the Large Magellanic Cloud (LMC)

PSPC = Position Sensitive Proportional Counter



10°

1071

TRANSM I SSION

10-2

TV T
L ¢ aoud

10-3

ENERGY [kev)

Figure 2 ROSAT PSPC efficiency (solid curve), transmission of ISM for hydrogen column of
2.10%° H atoms cm—2 (dashed line), distnnbution of a 3. 100K blackbody spectrum (dotted line) and
folded (observed) distnbution (hatch marks) (SA Rappaport, private communication).
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Fig. 3.— Grouped XRT observations of V574 Pup comparing the May 2005 (top panel)
and the July through August data sets (bottom panel). The comparison shows that V574
Pup has evolved from a hard early spectrum (top panel) into a SSS spectrum (bottom
panel). The count rate is higher in the top panel, which may be due either to the higher
sensitivity of the detector at higher energies or the higher amounts of absorption at soft
energies. Ness et al. 2007
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Grouped and rebinned XRT spectrum of V574 Pup covering July 2005 to August 2005 . The
histogram (plus error bars) gives the observed spectrum, and a smooth line showing a
blackbody model is overplotted purely to guide the eye.

Ness et al. 2007
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lllustration of extraction of counts for V723 Cas (top) and V4743 Sgr (bottom).
V723 Cas now the longest nova observed in X-rays “in outburst”
Ness et al. 2007, 2008



Days after outburst
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Days after outburst

XRT count rates of all sources in our sample, plotted against the day of observation after their outbursts.
The count rates are corrected for distance squared, which is uncertain. Multiple observations of the same
targets are connected with dotted lines.

Bottom: Observations from various other missions. The observed X-ray luminosities (not corrected for
absorption, except for V1974 Cyg, which is instead rescaled) of recent well-observed novae with SSS
phases. Similar plots have been created by Pietsch et al. (2005, 2006). Ness et al. 2007
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SWIFT Burst
and Transient
(BAT)
Observations
of RS Oph
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25 and 25-50 keV bands observed with Swift BAT. Units
are ergs cm~—2 s~1 and are based on count rates in these bands, assuming the spectral
form found from observation 1 XRT data. The circles show the flux in the same energy
bands from extrapolation of the models. Means have been calculated over 24 hr
periods and are represented by a point at the weighted mean time, with horizontal
error bars stretching from the first to the last sample included in the mean. The very
irregular sampling leads to uneven horizontal error bars. The dotted line is the time of

the first optical detection of the outburst. Bode et al. 2006
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Temporal behavior of the overlying absorbing column in the red giant wind, net of the
assumed interstellar column of cm~2, derived from the XRT spectral fits. A vertical
dashed line on this figure indicates the expected end of phase I development. The
diagonal dashed line is a power law extrapolation. Bode et al. 2006



Previous Best observed Nova in X-rays:

Nova Cyg 1992: V1974 Cyg

18 observations with ROSAT - brightest SSS in 1993
Slow Rise THE CLEARING OF THE EJECTA!
Rapid Decline - the poqlinlg remnant
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Swift Observations: First 26 days

1
channel energy (keV)




Later Swift X-ray spectra
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1st appearance of hot
WD on day 26

kTgg=30 eV on day 29,
=54 eV on day 50.5

Variable neutral oxygen
absorption (0.54 keV)

Late flux decline
consistent with
temperature drop at day
76.9



Swift*:
1. First Observations within 3 days

2. Detected with BAT and UVOT

On some days obtained one observation every 90
minutes

w

Followed entire outburst
About 350 ksec of data with XRT
Did NOT see the Super Soft Source (SSS) until ~ day 30

SSS => emission from hot white dwarf stellar
atmosphere (Krautter et al. 1996 for V1974 Cyg)

N o o A

* Osborne et al., Bode et al.



Conclusions:

»Swift provided an unparalleled view of the explosion of RS
Oph

> Initial shock reaches a temperature exceeding 108K

»Super Soft Source (hot white dwarf atmosphere) does not
appear until about day 30 of the outburst--WHY?

» The turn-on of the SSS drives large amplitude oscillations
that persist for a few weeks (oscillations seen in other
novae in outburst.

» 35 sec oscillations seen in Swift data from time to time during
SSS phase

»White dwarf probably massive and growing in mass to the
Chandrasekhar Limit. BUT too much hydrogen in
system and explosion unlikely to be called a SN la ?

»Need T CrB to explode - but not until we are back home



